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Abstract 

 
Failures frequently occurred in manufacturing machines due to complex and changeable 
manufacturing environments, increasing the downtime and maintenance costs. This 
manuscript develops a novel deep learning-based method named Multi-Domain Convolutional 
Neural Network (MDCNN) to deal with this challenging task with vibration signals. The 
proposed MDCNN consists of time-domain, frequency-domain, and statistical-domain feature 
channels. The Time-domain channel is to model the hidden patterns of signals in the time 
domain. The frequency-domain channel uses Discrete Wavelet Transformation (DWT) to 
obtain the rich feature representations of signals in the frequency domain. The statistic-domain 
channel contains six statistical variables, which is to reflect the signals’ macro statistical-
domain features, respectively. Firstly, in the proposed MDCNN, time-domain and frequency-
domain channels are processed by CNN individually with various filters. Secondly, the CNN 
extracted features from time, and frequency domains are merged as time-frequency features. 
Lastly, time-frequency domain features are fused with six statistical variables as the 
comprehensive features for identifying the fault. Thereby, the proposed method could make 
full use of those three domain-features for fault diagnosis while keeping high distinguishability 
due to CNN's utilization. The authors designed massive experiments with 10-folder cross-
validation technology to validate the proposed method's effectiveness on the CWRU bearing 
data set. The experimental results are calculated by ten-time averaged accuracy. They have 
confirmed that the proposed MDCNN could intelligently, accurately, and timely detect the 
fault under the complex manufacturing environments, whose accuracy is nearly 100%. 
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1. Introduction 

With the rapid and continuous development of the manufacturing industry, the 
manufacturing environments are complex and changeable, causing a high incidence of failures. 
Those failures may cause disastrous accidents, including economic losses, environmental 
pollution, and even life casualties [1]. Finding one practical approach to detect potential 
process abnormalities and component faults as early as possible for enhancing the security and 
reliability of the whole control system has been extracted massive attention. 

 The current fault diagnosis method could be divided into three categories: model-based, 
signal-based, knowledge-based methods [2, 3]. The model-based methods require the operator 
to hand the principles and the constraints of the manufacturing industries before diagnosis. 
Then the observer gives the decision by comparing the consistency between the measured 
outputs and expected outputs [4]. Different from the model-based methods, signal-based 
methods detect the fault by measuring the consistency in inexplicit input-output. That is, they 
transform the raw signals into low dimensional time-domain or frequency-domain features for 
final judgement. e.g., the changes of root-mean-square current factor between healthy and 
faulty conditions are calculated for diagnosis power converters of switched reluctance motors 
[5]. Feng et al. employed the Fourier spectrum for the diagnosis of planetary gearboxes [6].  
As described above, both model-based and signal-based methods need to judge the fault by 
hand and depend upon the expert's experience.  

The knowledge-based methods, also known as the data-driven methods, including 
statistical analysis-, and learning-based methods, could learn some common patterns from 
historical data without expert’s experience for fault diagnosis. Statistical analysis-based 
methods mainly contain principal component analysis (PCA) and independent component 
analysis (ICA). They convert the raw signals into low-dimensional representations to detect 
the fault. For instance, Kaistha et al. [7] applied PCA for fault detection and isolation of a 
pressurized water reactor; Harmouche et al. [8] proposed a fault diagnosis method based on 
Kullback–Leibler divergence using PCA for an eddy currents application; Yu et al. [9] 
developed a novel method based on ICA for fault diagnosis of rotating machinery. 
Unfortunately, transformed less-dimensional signals may lose some critical information, 
thereby decreasing the performance of diagnosis. Moreover, improper feature selection in 
PCA and ICA also influence the diagnosis’s performance. 

The learning-based methods could overcome the above issues by directly processing raw 
signals. That is, integrating feature selection and fault diagnosis in one single framework 
without any human interaction. Two learning-based methods, including shallow learning and 
deep learning methods, are used for fault diagnosis. For the application of the shallow learning-
based method, Widodo et al. [10] employed a support vector machine (SVM) machine for 
condition monitoring and fault diagnosis. A tree-based shallow learning method, random 
forest (RF), was used for fault diagnosis in [11-13]. Furthermore, shallow artificial neural 
network (ANN) maps the raw signals into high-level feature maps in two or three hidden layers 
for fault diagnosis [14]. Even though shallow learning-based methods made a remarkable 
improvement for fault diagnosis, there still existed some limitations. Especially, SVM requires 
a large variety of memory to find the optimal plane, and it is easy to be overfitting. RF is 
sensitive to noisy data [15]. Shallow ANN is easy to fall into underfitting or overfitting as the 
extracted features are not “representative” enough.  

Fortunately, recent bosting deep learning technology gives us a new view to couple with 
fault diagnosis problem. Chiefly, deep brief networks (DBN), recurrent neural networks 
(RNN), and CNN are utilized for fault diagnosis. e. g., Tao et al. [16] adopted DBN with 
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fourteen statistical variables for bearing fault diagnosis. Zhao et al. [17] applied one of the 
most potent RNNs-long short-term memory (LSTM) for fault diagnosis of Tennessee Eastman 
benchmark process. Lei et al. [18] proposed a novel multi-channel LSTM (MCLSTM) with 
multivariate time series for the wind turbine's fault diagnosis. Chen et al. [19] applied CNN 
for fault diagnosis of the gearbox and achieved averaged accuracy of 96.8% on twenty testing 
data set by inputting the fast Fourier transform (FFT) transformed spectrum. Zhang et al. [20] 
proposed a novel CNN-based method using wide first-layer kernels (WDCNN) for fault 
diagnosis of bearing, and it achieved 100% accuracy on 19800 training samples. Long et al. 
[21] applied a two-dimensional CNN (2D-CNN) based on the structure of LeNet-5 for fault 
diagnosis; the validation experiments proved its state-of-the-art performance. A novel multi-
scale CNN (MSCNN) was developed to diagnose wind turbine gearbox [22]. They calculated 
the mean of window-signals as the different-scale inputs. The results indicate that four-scale 
CNN performs the best. Motived by [22], Shao et al. [23] developed a multi-scale feature 
fusion CNN (MSFFCNN) for time series classification in a smart factory, which could be 
utilized for fault diagnosis by changing the input data.  They directly use raw signals with 
different-scale convolutional operations to extract the multi-scale feature representations; 
extracted features are fused for classification. Moreover, a deep transfer learning approach 
based on Visual Geometry Group with 16-layer (VGG-16) and continuous wavelet transform 
(CWT) is proposed for bearing, induction motors, and gearbox fault diagnosis [24]. The 
authors give one table to see some essential deep learning-based methods for fault diagnosis 
in recent years, as shown in Table 1. 
 

Table 1. Recent references for fault diagnosis using deep learning technology 
Method Year Input data 

CNN [19] 2015 Statistical variables  
DBN [16] 2016 FFT spectrum 

WDCNN [20] 2017 Raw signals 
LSTM [17] 2018 Raw signals 

MCLSTM [18] 2018 Multivariate sensor signals 
LeNet-5 [21] 2018 2-D transformed signals 
MSCNN [22] 2019 Raw signals 

Deep transfer VGG-16 [24] 2019 CWT transformed images 
MSFFCNN [23] 2020 Raw signals 

   
As shown in Table 1, most of the current deep learning-based methods only applied single 

domain (time or frequency domain) features for fault diagnosis. For instance, WDCNN [20], 
LSTM  [17], MCLSTM  [18], LeNet-5 [21], MSCNN  [22], and MSFFCNN [23] utilized raw 
signals (time-domain) and  DBN [16] adopted FFT transformed frequency-domain features 
for fault diagnosis. They may ignore some essential feature representations in both time and 
frequency domains so that the fault diagnosis is still not satisfactory and can be improved. 
Even if deep transfer VGG-16 [24] employed CWT  transformed time-frequency domain 
features for fault diagnosis, it is hard to deploy on light-weight terminals for real-time 
diagnosis due to its huge parameters (more than 138 million). Moreover, most of those works 
did not test in a complex working environment. Motivated by those, this manuscript presents 
a novel multi-domain CNN (MDCNN) to extract rich feature representations from time, 
frequency, and statistical domains for intelligent, accurate, and real-time fault diagnosis. In the 
proposed MDCNN, time-domain features are extracted from raw signals, and frequency-
domain features are extracted from DWT transformed coefficients using CNN. Statistical 
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features are calculated by six statistical variables. Those three-domain features are fused as 
comprehensive features for fault diagnosis.  

The main contributions of this manuscript, as summarized follows: 
• We present a novel end-to-end fault diagnosis framework based on CNN using multiple 

domain features without any inner feature selection engineering. Comparative 
experiments have confirmed its effectiveness and priority. 

• The proposed MDCNN has excellent anti-noise and transfer learning capacities. 
Therefore, it works well in a complicated, noisy manufacturing environment.  

• The impact of each component in the MDCNN has been analyzed through an ablation 
study. Moreover, the inner feature of MDCNN was explored by using t-distributed 
stochastic neighbor embedding (t-SNE) technology. 

 The rest of this manuscript is arranged as follows. Section 2 gives some pre-knowledges 
of the proposed MDCNN, including CNN, DWT, and six statistical variables. Section 3 
presents the proposed MDCNN for fault diagnosis. In Section 4, sufficient comparative 
experiments are carried out to verify MDCNN’s effectiveness. Section 5 discussed the 
proposed MDCNN in-depth. The conclusions and future studies are presented in Section 6.  

2. Methodology  

2.1 CNN 
CNN could extract the hidden patterns of the input data through various filters in a virtual 
structure, which has been widely used for 2-D image classification [25], 1-D energy 
consumption forecasting [15, 26], and object detection [27]. Chiefly, CNN consists of three 
critical components: convolution, pooling, and activation functions. Convolution and pooling 
operations occurred alternatively in the structure of CNN. The activation function is to activate 
some parts of features to enhance the feature’s representability. The convolution operation is 
implemented using one convolutional layer with different filters, as described in (1).  
 

𝑋𝑋𝑗𝑗𝑙𝑙 = 𝑓𝑓(∑ 𝑋𝑋𝑖𝑖𝑙𝑙−1𝑖𝑖∈𝑀𝑀𝑗𝑗 ∗ 𝐹𝐹𝑖𝑖𝑖𝑖𝑙𝑙 + 𝜀𝜀𝑗𝑗𝑙𝑙)                                                               (1) 
 
Where 𝑙𝑙𝑡𝑡ℎ  layer’s feature is calculated through convolution operation ∗ between (𝑙𝑙 − 1)𝑡𝑡ℎ 
layer’s input and filters 𝐹𝐹𝑖𝑖𝑖𝑖𝑙𝑙  with a bias vector 𝜀𝜀𝑗𝑗𝑙𝑙. Moreover, the final feature map is activated 
by one activation function 𝑓𝑓(). One of the most famous activation functions is the Rectified 
Linear Unit (ReLU) [28]. In which the values less than zero will be deleted, as defined in (2). 
Obtained feature maps are processed by one pooling operation to reduce the complexity and 
speed up the network. There are three pooling operations, including maximum, minimum, and 
average pooling. After processing of CNN, the obtained features have the priority of 
translation, scaling, and rotation invariance, which is very suitable for fault diagnosis.  
 

𝑎𝑎𝑗𝑗𝑙𝑙 = �
0, if 𝑋𝑋𝑖𝑖𝑙𝑙−1 < 0
𝑋𝑋𝑖𝑖𝑙𝑙−1, Otherwise

                                                                          (2) 

 
The structure and workflow of 2-D CNN with two 2-D convolutional and pooling layers is 

described in Fig. 1. The term “Conv”, “Pooling”, and “ReLU” are corresponding to 
convolution, pooling, and activation functions. Moreover, obtained features need to be 
flattened with the “Flatten” operation. Those features are utilized to predict the output in a 
linear mode. 
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Fig. 1. The workflow of 2-D CNN with two convolutional and pooling layers 

2.2 DWT 
DWT could decompose the raw time-series 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) into frequency-domain features with 
time localization using a set of discrete wavelets  𝐷𝐷𝐷𝐷𝑎𝑎,𝑏𝑏(𝑡𝑡) with scaling factor 𝑎𝑎, and time 
localization 𝑏𝑏, as given in (3). Where 𝐷𝐷𝐷𝐷𝑎𝑎,𝑏𝑏(𝑡𝑡) is discretized with individual mother wavelet 
such as Daubechies, Harr, Symlets, Coiflets, as defined in (4). Involving 𝑎𝑎, and 𝑏𝑏, we could 
convert DWT into one scaling function 𝑆𝑆  (5) and one discrete wavelet function 𝐷𝐷  (6). 
Furthermore, the coefficients of DWT, including two parts: “approximation” part 𝑎𝑎𝑗𝑗

2
(𝑘𝑘) works 

as one low-frequency pass filter, as given in (7); “details” part 𝑑𝑑𝑗𝑗
2
(𝑘𝑘)  works as one high-

frequency pass filter, as shown in (8). Where 𝐷𝐷(𝑡𝑡)𝑗𝑗,𝑘𝑘
∗  is the complex conjugate of 𝐷𝐷(𝑡𝑡)𝑗𝑗,𝑘𝑘. 

Multi-resolution frequency-domain features could be obtained by multi-level DWT 
decomposition. Enormously, one-level DWT (1-DWT) decomposes the signal into (𝑎𝑎1, 𝑏𝑏1) 
corresponding to the low-frequency part and high-frequency part. Two-level DWT (2-DWT) 
decomposes the 1-DWT generated low-frequency part 𝑎𝑎1 into (𝑎𝑎2,𝑏𝑏2). Repeating the above 
operations 𝑛𝑛  times will get 𝑛𝑛 − resolution frequency-domain features (𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛,
𝑏𝑏𝑛𝑛−1, … , 𝑏𝑏2,𝑏𝑏1). 
 

𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡))𝑎𝑎,𝑏𝑏 = ∫ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)+∞
−∞ 𝐷𝐷𝐷𝐷𝑎𝑎,𝑏𝑏(𝑡𝑡)𝑑𝑑𝑑𝑑                                                      (3) 

 

𝐷𝐷𝐷𝐷𝑎𝑎,𝑏𝑏(𝑡𝑡) = 𝑎𝑎−1 2� (𝑡𝑡−𝑏𝑏
𝑎𝑎

), where �
𝑎𝑎 = 2𝑗𝑗 , 𝑗𝑗 ∈ 𝑍𝑍

𝑏𝑏 = 𝑘𝑘2𝑗𝑗 , 𝑗𝑗,𝑘𝑘 ∈ 𝑍𝑍
                                                       (4) 

 
𝑆𝑆(𝑡𝑡)𝑗𝑗,𝑘𝑘 = 1

�2𝑗𝑗
𝑆𝑆(2−𝑗𝑗𝑡𝑡 − 𝑘𝑘)                                                                                             (5) 

 
𝐷𝐷(𝑡𝑡)𝑗𝑗,𝑘𝑘 = 1

�2𝑗𝑗
𝐷𝐷(2−𝑗𝑗𝑡𝑡 − 𝑘𝑘)                                                                                           (6) 

 
𝑎𝑎𝑗𝑗
2
(𝑘𝑘) = ∫ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) 𝑆𝑆(𝑡𝑡)𝑗𝑗,𝑘𝑘𝑑𝑑𝑑𝑑                                                                                     (7) 

 
𝑑𝑑𝑗𝑗
2
(𝑘𝑘) = ∫ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)𝐷𝐷(𝑡𝑡)𝑗𝑗,𝑘𝑘

∗ 𝑑𝑑𝑑𝑑                                                                                     (8) 

 
 

2.3 Statistical Variables 
Statistical variable reflects the macro changing trend, which is very useful for distinguishing 
each fault type due to the signals having low cohesion and high coupling. The mean, 
maximum (max), and minimum (min) values could be used to detect the outliers existing in 
the signal. The standard deviation (std) reflects the stability of the signal. Kurtosis (Kurt) and 
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skewness (skew) reflect the distribution of signals. More detailed, kurtosis describes the 
steepness and slowness of a signal, while skewness indicates the distribution's symmetry. The 
calculations of each statistical variable, as given in (9)-(14). Where 𝑁𝑁 is the length of the signal. 
The reference [26] also adopted those six statistic variables for power consumption forecasting. 
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝑁𝑁
∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)𝑁𝑁
𝑡𝑡=1                                                                                                         (9) 

 
𝑚𝑚𝑚𝑚𝑚𝑚 = max (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡))                                                                                                        (10) 

 
𝑚𝑚𝑚𝑚𝑚𝑚 = min (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡))                                                                                                         (11) 

 

𝑠𝑠𝑠𝑠𝑠𝑠 = �1
𝑁𝑁
∑ (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2𝑁𝑁
𝑡𝑡=1                                                                                     (12) 

 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐸𝐸 �(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠
)3�                                                                                                  (13) 

 
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝐸𝐸 �(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠
)4�                                                                                                    (14) 

3. The proposed MDCNN for Fault Diagnosis 
This manuscript presents a multi-domain CNN for fault diagnosis, as shown in Fig. 2. It 
contains five steps: Input construction (step 1) is to obtain the time-domain features “raw”, 
frequency-domain and statical-domain inputs. Step 2 is to extract the high-level features using 
CNN from time and frequency-domain inputs. Step 3 merged extracted time and frequency-
domain features. Step 4 makes a fusion between the time-frequency and statistical-domain 
features. The fusion features will be used for fault diagnosis. Step 5 gives fault diagnosis result 
and update the whole networks. The detailed description is given in the following subsections. 

 

 
Fig. 2. The framework of the proposed MDCNN for fault diagnosis. Five steps are contained in the 
proposed framework. They are input construction, CNN feature extraction, time-frequency domain 

features fusion, feature fusion, fault diagnosis and updates the neural network. Notably, CNN feature 
extraction includes time-domain feature extraction, marked with a blue dotted frame; and frequency-

domain feature extraction, marked with a red dotted frame. 
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3.1 Input Construction  
Assuming that we collected 𝑁𝑁  signals denoted as 𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑠𝑠𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠𝑠𝑠2, 𝑠𝑠𝑠𝑠𝑠𝑠3, … , 𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁} , each 
signal  𝑠𝑠𝑠𝑠𝑠𝑠 contains 𝑇𝑇 values, denoted as  𝑠𝑠𝑠𝑠𝑠𝑠 = {𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, … , 𝑥𝑥𝑡𝑡 , … , 𝑥𝑥𝑇𝑇}, where 𝑡𝑡 is time step. 
Moreover, we know the fault type of each signal given by experts, which is formalized as 𝐿𝐿 =
{𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, … , 𝑙𝑙𝑁𝑁}. The historical samples {𝑆𝑆𝑆𝑆𝑆𝑆, 𝐿𝐿} will be utilized to train the MDCNN for fault 
diagnosis. This manuscript adopted three-domain inputs to model the hidden patterns of each 
signal fully. The raw signal is the time-domain input. The raw signal is decomposed by DWT 
using (7) and (8) to obtain multi-resolution frequency-domain expression, which could be 
written as 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠𝑠𝑠) = {𝑎𝑎𝑛𝑛,𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑛𝑛, } . Here, 𝑛𝑛  is the DWT 
decomposition level. Six statistical variables defined in (9)-(14) are utilized to distinguish 
signals in the statistical domain. Consequently, the input of the proposed MDCNN could be 
written as (15), where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑠𝑠) is to calculate six statistical variables.  
 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = {𝑠𝑠𝑠𝑠𝑠𝑠,𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠𝑠𝑠), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑠𝑠)}                                                                 (15) 

3.2 Domain Features Extraction  
Time and frequency-domain inputs are processed by CNN individually to extract high-level 
hidden patterns. This manuscript primarily applies 1-D CNN for feature extraction, in which 
1-D convolution operation (Conv1D) and maximum pooling operation (Maxpool1D) 
alternatively occurred. To easily understand the structure of the proposed MDCNN, the 
authors named the combination of Conv1D and Maxpool1D as "Block." The time-domain 
features extracted by CNN are denoted as (16), and the frequency-domain features are written 
as (17). The 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚 represents the depth of the "Block",  𝑚𝑚 depends on the length of signal  
𝑇𝑇 . Larger 𝑚𝑚 could extract more abstract feature representations while it will increase the 
model's parameters. To make a trade-off, the authors set 𝑚𝑚 as three. Moreover, the hidden 
nodes in the Conv1D layer increase from 16 to 64, and the pooling size is set as two. A more 
detailed setting of hyperparameters is discussed in the experiment part. 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚(𝑠𝑠𝑠𝑠𝑠𝑠)                                                                                    (16) 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = [𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚(𝑎𝑎𝑛𝑛),𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚(𝑑𝑑1),𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚(𝑑𝑑2), … ,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚(𝑑𝑑𝑛𝑛)]    (17) 

3.3 Feature Fusion  
To obtain the fusion features, the proposed MDCNN employed merge operation to integrate 
three domain features. First, MDCNN merges the time-domain and frequency-domain features, 
then fused time-frequency domain features are processed by one max pooling layer to reduce 
its dimensions and speed up the network again. This process is defined as (18). The 
comprehensive features integrate time-frequency domain features and statistic-domain 
features, as shown in (19).  
 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1𝐷𝐷(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑢𝑢𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)) 

(18)    
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑠𝑠))                                              (19) 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 5, May 2021                                        1617 

3.4 Output and Update the Network 
The comprehensive features are utilized to predict the probability of each fault in a linear mode. 
The maximum probability corresponding to the label is selected as the signal's fault type using 
the "argmax" operation. The process of fault diagnosis using the proposed MDCNN could be 
formalized as: 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀({𝑠𝑠𝑠𝑠𝑠𝑠,𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠𝑠𝑠), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑠𝑠)})                 (20) 
 
Where  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀() is the trained model. As can be seen from (20), the proposed MDCNN 
could directly detect the fault using three-domain features without any feature selection 
operations. Moreover, MDCNN updates the whole network by calculating the loss of 
categorical cross-entropy between predicting values and ground truth with “Adam” [29] 
optimizer. All activation functions are "ReLU," except for the last is "Linear." 

4. Experimental Verification 
The authors implement the proposed MDCNN based on the operating system of ubuntu 16.04, 
64 bits with 23.4 gigabytes, Intel (R) i7-700 CPU. The deep learning framework is TensorFlow 
backend Keras, and the programming language is python.   

4.1 Data  
This manuscript adopts a bearing data set collected from the CWRU bearing data center to 
validate the effectiveness of the proposed MDCNN. The authors adopt 12k Drive End Bearing 
fault data and Normal Baseline data for the experiment. Each data sample is collected at 12, 
000 samples/second under four different loads, including 0 power horse (PH), 1 PH, 2 PH, and 
3 PH corresponding subset A, B, C, and D. Each subset (loading) consists of four different 
faulty diameters: 7, 14, 21, and 28 mils.  One diameter fault is caused by different components: 
inner race (IR), ball, outer race (OR) of the bearing except for 28 mils without OR.  
Consequently, eleven faulty data under four loadings are collected. Besides, a standard 
baseline data set is used for identifying faulty bearing to normal bearing under each loading. 
That is, twelve subclassifications existed in the data set, including IR7, IR14, IR21, IR28, Ball 
7, Ball 14, Ball 28, OR7, OR14, OR21, and Normal. Moreover, the original faulty data is a 
long time series; the authors transformed each faulty type into 685 samples with the sample 
rate of 2048 using algorithm 1. The reason for that is CNN requires equal-length time series 
as the input and considering the influence of data imbalance. Zhang et al. also utilized 2048 as 
a sample rate to process the data [20]. Therefore, each subset contains 8200=685×12 samples. 
Furthermore, subset E integrates A, B, C, and D, including 32880=8200×4 samples, which is 
generated to verify the proposed MDCNN reasonably. The description of the data is descripted 
in Table 2. 
 

Algorithm 1: Overlap algorithm to generate the data samples  
Input: A long time series T, the number of samples N (defined is 685), and the length of sample K 
(defined is 2048).  
Output: The transformed samples. 
1. Compute the stride = len(T)−K

N−1
. 

2. Initial each sample’s starting position start = 0, and ending position end = K. 
3. Define a variable Data to save transformed time series T. 
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4. for i in 0: N{ 
5.    Data[i] = T[start: end] 
6.    start = start + stride 
7.    end = start + K } 
9. return Data 

 
Table 2. Each subset description. 

Data  
(loads) 

Faulty types (faulty components + faulty diameters)  
Samples IR7 IR14 IR21 IR28 Ball7 Ball14 Ball21 Ball28 OR7 OR14 OR21 Normal 

A (0PH) √ √ √ √ √ √ √ √ √ √ √ √ 8200 

B (1 PH) √ √ √ √ √ √ √ √ √ √ √ √ 8200 

C (2PH) √ √ √ √ √ √ √ √ √ √ √ √ 8200 

D (3PH) √ √ √ √ √ √ √ √ √ √ √ √ 8200 

E (0, 1, 2, 
3PH) 

√ √ √ √ √ √ √ √ √ √ √ √ 32880 

4.2 Modeling 
Before modeling, the authors did an exploratory analysis to illustrate the difficulties for fault 
diagnosis under complicated environments, as shown in Fig. 3. All types of signals fluctuate 
frequently and randomly. It is tough to identify Ball 7, Ball 21, IR 7, IR 28, OR 14, and normal 
even though they are in the same loading; IR 14 is very similar to OR 21. Also, the fault types 
of Ball 7 in 0 PH, Ball 21 in 2 PH, IR 28 in 3 PH, and OR 14 in 1 PH are very similar. Those 
strong similarities and randomness increase the difficulties for fault diagnosis of bearing. 
Therefore, this manuscript applies CNN to extract high-level hidden patterns of each signal 
from three-domain inputs to increase distinguishability. To efficiently modeling, the authors 
convert the 12 fault types into digits [0, 11]. 
 

 
Fig. 3. The visualization of each fault. (a) is for different faults in the same loading 0 PH; (b) is for 

different faults in different loadings. 
 

Two issues need to consider carefully: which wavelet is better for fault diagnosis? How 
many levels of DWT should be selected?  The authors calculated the mean square error (MSE) 
between wavelets reconstructed signals and the ground truth using three kinds of DWT: 1-
DWT, 2-DWT, and three-level DWT (3-DWT). Five wavelets including “db2”, “bior 1.1”, 
“coif 2”, “harr” and “sym2” are utilized for validation, the results as shown in Table 3. The 
results indicate that “db2” is the most suitable for reconstructing the bearing signals, which 
outperforms others in all kinds of DWT. Moreover, 1-DWT outperforms other levels. Thereby 
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1-DWT of “db2” is selected for building the model and consequential analysis. Moreover, the 
authors give one example of 3-DWT using “db2” to explain its working principle, as shown 
in Fig. 4. In the 1-DWT process, the original signal is decomposed into approximation part 𝑎𝑎1 
and details part  𝑑𝑑1 . Then the approximation part of 1-DWT 𝑎𝑎1  is decomposed into 
approximation part 𝑎𝑎2 and details part 𝑑𝑑2. After three-time decomposition, we could obtain 
four subseries: 𝑎𝑎3, 𝑏𝑏3, 𝑏𝑏2, 𝑏𝑏1 to model the signal’s changing pattern in the frequency domain. 
Decomposed components are more identifiable than the original signal due to it reduces some 
random vibration.  
 

Table 3. The MSE between DWT reconstructed signals and ground truth in different levels  
Wavelet MSE (1-DWT) MSE (2-DWT) MSE (3-DWT) 

Db2 9.30×10-33 𝟏𝟏.𝟖𝟖𝟖𝟖 ×10-32 𝟏𝟏.𝟗𝟗𝟗𝟗 ×10-32 
Bior 1.1 1.48 ×10-32 3.17 ×10-32 3.48 ×10-32 
Coif 2 1.66 ×10-32 3.05 ×10-32 3.20 ×10-32 
Harr 1.48 ×10-32 3.17 ×10-32 3.49 ×10-32 

Sym2 6.09 ×10-25 7.08 ×10-25 7.62 ×10-25 

 
Fig. 4. One example of 3-DWT. The original signal is decomposed into four subseries: approximation 

part 𝑎𝑎3, details part 𝑑𝑑3,𝑑𝑑2,𝑑𝑑1. 
 

4.3 Comparative Analysis  
To validate the effectiveness of the proposed MDCNN for fault diagnosis, we compared it 
with some leading deep learning-based methods, including WDCNN [20], MSCNN [22], and 
MSFFCNN [23] on subset E. The detailed configurations of those comparative methods, as 
shown in Table 4. Each deep model runs ten times using a 10-folder cross-validation approach 
to evaluate fairly, and the early stop strategy is applied to find the best model as soon as 
possible. Specially, we split the data into three parts: train, validation, and test with the ratio 
of 7:1:2. The training part is to train the model. The validation part is to find the best model in 
the given training steps within the early stop strategy. If the validation accuracy did not 
increase within ten steps, the training process would be ended.  Furthermore, the model with 
the highest accuracy on validation data will be saved as the best model.  
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Table 4. The configuration information for comparative methods 
Method Input Description 

 
 
 

WDCNN [20] 

 
 
 

Raw signals 

Structure: 
Input-Conv1D(16,64,24)-Maxpool1D(2)-
Conv1D(32,3,1)-Maxpool1D(2)-Conv1D(64,3,1)-
Maxpool1D(2)-Conv1D(64,3,1)-Maxpool1D(2)-
Conv1D(64,3,1)-Maxpool1D(2)-Dropout(0.5)-
Dense(100)-Dense(classes) 
Activation functions are “ReLU”, optimizer is 
“Adam”, loss function is “cross-entropy” 

 
 
 
 

MSCNN [22] 

 
 
 
 

Input1: Raw signals 
Input2: mean(2) 
Input3: mean(3) 

Structure: 
Input-Conv1D(16)-Max1D(2)-Conv1D(32)-
Max1D(2)-Conv1D(64)-Max1D(2) 
Three sub-outputs: Sub1, Sub2, Sub3 
Output: 
Concatenate(Sub1,Sub2,Sub3)-Dense(100)-
Dense(classes) 
Activation functions are “ReLU”, optimizer is 
“Adam”, loss function is “cross-entropy” 

MSFFCNN [23] Raw signals The author’s code 
      

The comparison results in terms of accuracy, as shown in Table 5. The findings show that 
the proposed method wins five times with the highest accuracy of 100%. Moreover, the results 
show that the proposed method outperforms others in terms of average accuracy, which is up 
to 99.97%. Furthermore, the proposed method has good robustness, which can be conducted 
from the standard error. Those three methods could be ranked as: The 
proposed>MSFFCNN>MSCNN>WDCNN. To quantify the difference between those 
methods, the authors did a 𝑡𝑡-test, as shown in Table 6. The results indicate that the significant 
difference existed between the proposed method and WDCNN, MSFFCNN due to the 𝑝𝑝-value 
of the 𝑡𝑡-test is less than 0.05; By the contrary, there is no significant difference between the 
proposed MDCNN and MSCNN. The reason for that is MSCNN reached the highest accuracy 
of 100% four times while the other are two or less. However, MSCNN is still influenced by 
the random data splitting, which increases the risk for the fault diagnosis of bearing. In 
summary, the proposed method could accurately detect the fault of bearing using vibration 
signals with good robustness.  
 

Table 5. The results of different deep models for bearing fault diagnosis on subset E (%) 
 

Method 
Times  

Average 1 2 3 4 5 6 7 8 9 10 
WDCNN 

[20] 
99.01 99.97 100 99.97 99.97 91.64 100 91.67 91.67 91.67 96.56

±4.01 
MSCNN 

[22] 
91.67 99.97 99.97 99.91 100 100 91.67 100 100 99.91 98.31 

±3.32 
MSFFCNN 

[23] 
99.85 99.97 98.80 98.75 99.79 98.69 99.97 99.97 99.82 99.91 99.55 

±0.53 
The 

proposed 
100 99.94 99.94 100 100 99.94 100 99.88 99.97 100 99.97 

±0.04 
 

Table 6. The 𝑝𝑝-value of 𝑡𝑡-test among four deep models 
Method WDCNN [20] MSCNN [22] MSFFCNN [23] The proposed 

WDCNN [20] 1 0.33 0.04 0.02 
MSCNN [22] 0.33 1 0.28 0.15 

MSFFCNN [23] 0.04 0.28 1 0.03 
The proposed 0.02 0.15 0.03 1 
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4.4 Feature Extraction Capacity Analysis 
To explore and understand the feature extraction capacity of the proposed MDCNN, the 
authors visualized some layers’ output using t-SNE technology on subset A, as shown in Fig. 
5. The raw signals (a) are mixed, inseparable, nonlinear and difficult to identify; 1-DWT 
decomposed “approximation” (b) and “details” parts (c) could identify fault 0 from others; 
Statistical components (d) enables those signals more separable. After the process of 1-D CNN, 
the features extracted from the time-domain becomes separable and identifiable, which can be 
conducted from (e). However, fault 2 and fault 3 are still mixed. Luckily, the CNN extracted 
features from DWT transformed the "approximation" part (f) makes fault 2 and fault 3 more 
discrete. Extracted features from DWT transformed “details” part (g) enables fault 2 far from 
fault 3. By combining those three domain features, CNN learned final features (h) are 
discriminable and independent, which satisfies the principle of classification: the distance 
between classes should be the largest while the distance within classes should be the smallest.  
 

                       
(a) The raw signals                                            (b) Decomposed approximation part 

                      
      (c) Decomposed details part                                             (d) Statistical domain inputs 

                        
 (e) The CNN extracted from raw signals                       (f) The CNN extracted from approximations 
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(g) The CNN extracted from details                                              (h) The final features 
 
Fig. 5. The feature visualization results using t-SNE technology on subset A. (a) is the raw signals; (b) 

and (c) are 1-DWT decomposed “approximation” and “details” parts; (d) is six statistical variables; 
(e), (f), and (g) are CNN extracted features from raw signals, 1-DWT decomposed components, 

respectively.  Different colours represent different fault types, as described in the legend. 
 
 

4.5 Anti-noise Test  
In the real production environment, collected data may contain noises, which increase the 
difficulty and uncertainty for fault diagnosis. It requires the model has adequate anti-noise 
capacity. This manuscript validates the proposed method’s anti-noise capacity on subset E. 
Especially, different-intensity white noises are added into raw signals for validation. The white 
noise’s intensity is measured with the signal-noise ratio (SNR), as defined (21). Where 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
and 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 are the power of signals and noise, whose unit is the decibel (dB). The authors 
added the white noise is from -4dB to 10dB. Three comparative methods defined in Table 5 
are used to illustrate the priority of the proposed method. The averaged accuracy, as shown in 
Fig. 6. The error bar is calculated with standard error, which is used to test each method's 
robustness. The findings derive that the proposed MDCNN outperforms others; all cases are 
higher than 99%. Furthermore, it wins seven times expect for the MSFFCNN has the highest 
accuracy for -4dB. Moreover, the proposed method achieves the highest averaged accuracy of 
99.62% simultaneously gets the lowest standard error of 0.26. Even though comparing to the 
none-noise case (see Table 5), the proposed method only reduced by 0.35% on average. Those 
pieces of evidence prove that the proposed method has an adequate anti-noise capacity for 
fault diagnosis. 
 
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 10𝑙𝑙𝑙𝑙𝑙𝑙10
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

                                                                         (21) 
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Fig. 6. The anti-noise test on subset E using different deep learning-based methods. 

 

4.6 Ablation Study  
To explore each component’s effect in the proposed MDCNN for fault diagnosis, the authors 
did the ablation study with five experiments. We designed time-frequency domain CNN 
(TFCNN) to validate the effectiveness of the statistical inputs; Designed time-domain CNN 
(TCNN) and time-statistical CNN (TSCNN) to explore the impact of frequency-domain inputs; 
Designed frequency-domain CNN (FCNN) and frequency-statical CNN (FSCNN) to validate 
the effectiveness of time-domain inputs, respectively. All configurations of those experiments 
are the same as MDCNN. The ten-time results’ distribution and averaged accuracy for each 
model, as shown in Fig. 7. Statistical-domain inputs have improved the fault diagnosis 
performance from 98.28% to 99.97% by comparing MDCNN and TFCNN; By comparing 
MDCNN with TSCNN, the frequency-domain has improved performance of 1.37%; The time-
domain features contribute more than 0.08%, which can be conducted from MDCNN and 
FSCNN. Moreover, only using one or two domain inputs for fault diagnosis results in unstable 
distribution, which could be conducted from TFCNN, TCNN, TSCNN, and FCNN. Among 
them, FSCNN performs better compared to other combinational and signal models. Designed 
and combined each domain feature with CNN properly could effectively improve fault 
diagnosis's performance, including the accuracy and robustness, which could be found from 
MDCNN. In summary, statistical domain inputs provide robust feature expression of raw 
signals; DWT transformed frequency-domain features enable the proposed more accurate and 
robust; Time-domain features reflect the changing trend of raw signals in the time domain.  



1624                                                                               Shao et al.: Fault Diagnosis of Bearing Based on Convolutional 
Neural Network Using Multi-domain Features  

` 

 
Fig. 7. The ten-time results’ distribution and averaged accuracy using radar plotting for ablation study. 

The X-axis is training times, and the y-axis is the corresponding accuracy. 
 

4.7 Transfer Learning Capacity 
In a real production environment, too many factors may influence the fault diagnosis results, 
such as different currents, working loadings, and varying operator level. It is unrealistic to 
collect all these types of data to train each case. Therefore, the model has good transfer learning 
capacity is important. The authors designed four experiments to validate the proposed 
method’s transfer learning capacity, as described in Table 7. In each case, one subset is used 
to train the model while the other three are for testing. For instance, subset A is used as training 
data to train the proposed model; subsets B, C, and D are for testing in case 1, written as A-
>B, A->C, and A->D. We compared the proposed method with the other three leading methods, 
including WDCNN, MSCNN, and MSFFCNN, to validate its effectiveness. The comparative 
results using ten-time averaged accuracy and standard error, as shown in Fig. 8. The findings 
show that the proposed method has won six times in making of accuracy for the following 
cases: A->D, B->C, B->D, C->A, D->A, and D->C.  WDCNN won five times for A->B, A-
>C, B->A, C->B, D->B, and MSCNN won one time for C->D. Moreover, the proposed 
method outperforms others in terms of average accuracy, which is up to 94.50. Those four 
methods could be classed into two levels. The proposed method and WDCNN could be divided 
into the first level due to their averaged accuracy are higher than 90%, while the other two are 
less than it. Besides, the proposed method is more stable than WDCNN, which could be 
conducted from averaged error bar: the proposed (4.59) <WDCNN (4.88). The comparative 
analysis has proven that the proposed MDCNN has a good transfer learning capacity for fault 
diagnosis.  
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Table 7. Four experimental rigs used for the transfer learning capacity test 
Experiments Training data Testing data 

Case 1 A B C D 
Case 2 B A C D 
Case 3 C A B D 
Case 4 D A B C 

 

 
Fig. 8. The comparative results for the transfer learning capacity test 

5. Discussion 
We have proposed a novel deep model named MDCNN for fault diagnosis of bearing, as 
shown in Fig. 2. The difficulties for fault diagnosis of the bearing are strong similarities existed 
in different kinds of signals, which could be seen from Fig. 3. Therefore, this manuscript used 
three-domain features to model the hidden patterns of signals fully. Moreover, CNN is 
employed to automatically extract in-depth, rich feature representations from three-domain 
inputs for intelligent, end-to-end fault diagnosis of bearing.  

The authors have given one clear pipeline for building the model. Primarily, it utilized 
DWT to obtain frequency-domain inputs and calculated six variables as statistical domain 
features. Moreover, the authors calculated MSE to choose the best wavelet from five wavelets. 
The result indicated that "db2" performs the best within one-level DWT, as shown in Table 3. 
One 3-DWT example in Fig. 4 indicates that DWT decomposed components are more 
identifiable than the original signal.  

The comparative experiments have confirmed the effectiveness and priority of the proposed 
method for fault diagnosis of bearing, which could be conducted from Table 5. Each model is 
trained ten times to evaluate fairly. The proposed method's accuracy is near to 100%, while 
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the standard is lower than 0.05.  
     Fig. 5 has confirmed that the proposed method has excellent feature extraction capacity. 
The ablation study has analyzed each component's impact in the MDCNN, as shown in Fig. 7. 
Statistical domain inputs provide robust feature expression of raw signals; DWT transformed 
frequency-domain features enable the proposed more accurate and robust; Time-domain 
features reflect the changing trend of raw signals in the time domain. 

We added white noise with different intensities (from -6 dB to 10dB) into the raw signals 
to validate the anti-noise capacity of the proposed MDCNN. The results indicated that the 
proposed method has an adequate anti-noise capacity, and all cases' accuracies are higher than 
99%, which could be found in Fig. 6. The comparative analysis in Fig. 6 confirmed its priority 
again. 

We designed four experiments to verify the proposed method’s transfer learning capacity, 
as described in Table 7. The comparative analysis has illustrated that the proposed MDCNN 
has an excellent transfer learning capacity, is suitable for fault diagnosis of bearing in complex 
environments. 

Moreover, the proposed method only takes 128 microseconds (𝜇𝜇𝜇𝜇) to process each sample, 
which can be used for real-time fault diagnosis. For the parameters of the proposed MDCNN, 
it has 116, 616 parameters and takes up 1.2 megabytes (MB), which could be easily deployed 
in light-weight mobile terminals for fault diagnosis. 

6. Conclusion 
In conclusion, this paper proposed a novel, accurate, and intelligent end-to-end framework 
named MDCNN for fault diagnosis of bearing. The proposed MDCNN has three-channel 
inputs, including raw time-domain signals, DWT transformed frequency-domain 
representations and statistical domain features. Time and frequency domains channels are fed 
into CNN individually to learn hidden patterns existed in the time-frequency domain. 
Extracted time-frequency hidden features are merged with six statistical variables as 
comprehensive features for fault diagnosis. Sufficient and detailed comparative analysis has 
confirmed the proposed method's effectiveness for fault diagnosis of bearing, whose accuracy 
is nearly 100%.  It could detect the fault accurately in various complex environments such as 
noisy environments, different loadings due to its excellent feature extraction and transfer 
learning capacities. Moreover, the proposed method could be easily deployed in light-weight 
mobile terminals for real-time fault diagnosis as its parameters only take 12 MB.  

In the future, we will validate the proposed MDCNN’s generality on other kinds of signals. 
Besides, as described in Fig. 8, the averaged accuracy for different loads is 94.50%, which is 
not very high and can be improved by using domain adaption technology. Thereby, fault 
diagnosis using deep learning and domain adaption technologies is another interest.   
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